Natural language processing (NLP) is a branch of artificial intelligence within computer science that focuses on helping computers to understand the way that humans write and speak.
Computer vision is a branch of artificial intelligence (AI) that enables computers and systems to derive meaningful information from digital images, videos and other visual inputs — and take actions or make recommendations based on that information. If AI enables computers to think, computer vision enables them to see, observe and understand.
EDA, Classification, clustering and time series forecasting projects, developed using Machine Learning.
Natural language processing (NLP) is a branch of artificial intelligence within computer science that focuses on helping computers to understand the way that humans write and speak.
Large Language Model Agents MOOC, Fall 2024 - Essential LLM abilities required for task automation, and infrastructures for agent development. (Agentic AI, Autogen, RAG, Vector database, LLM, Prompt engineering)
Multimodal RAG powered by Milvus, Visualized BGE model, and GPT-4o. (Multimodal RAG, Vector database, LLM)
Use Watsonx to respond to natural language questions using RAG approach - LLM model, Langchain and Milvus (Context, RAG, Vector database, Foundation models, LLM, Prompt engineering)
Airbnb - Segmentação dos principais assuntos das reviews (Pandas, Spacy, Deep Translator, GoogleTranslator, googletrans, NLTK, LDA, WordCloud, Pandarallel, pyLDAvis, sklearn, GridSearchCV)
Hackathon Prêmio de Dados Abertos do BNDES (VGG16, AgglomerativeClustering, Tesseract, Pytesseract, Latent Dirichlet Allocation (LDA), WordCloud)
Grupo de desafios do curso BI Master (Classificação Multiclasse, BIOBERT, spaCy, NER, POS, Tópicos, Geração de Texto, sentence-bert, Tensorflow USEm)
Procon - Segmentação dos principais assuntos das reclamações (Pandas, Numpy, NLTK, Regex, WordCloud)
Twitter - Análise de Sentimento - hashtag #Plus-Size (Pandas, Numpy, Twint, NLTK, BeautifulSoup, Spacy, Regex, WordCloud, Affin, Googletrans)
EDA, Classification, clustering, time series forecasting and BI projects, developed using Machine Learning.
Fifa19 dataset visualization using Bokeh
Segmentação e Predição de comportamento de clientes para Campanha de Marketing (Sklearn, Pandas, Random-forest, Logistic Regression, Decision Tree, KNN, Kmeans clustering)
Projeto Final da disciplina de Rede Neurais - Series-Temporais (LSTM, GRU, RMSE, MSE, MAPE e MAE)
Localizacao e Uso da Informacao (Pandas, Numpy, BeautifulSoup, Regex, Requests)
Predição de diagnóstico (KNN, Random Forest, Decision Tree e SVM - RapidMiner, RStudio, Python)
Business-Intelligence (ETL, Postgres, PDI, SQL Power Architect e PowerBI)